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Abstract
Production-Inventory settings with heterogeneous agents appear frequently in the study of
supply chain management. For instance, there are Production-Inventory situations in which
certain agents are essential as they can reduce the costs of other agents (followers) when they
cooperate with each other. The study of such a cooperation can be modelled by means of a
cooperative game and studied finding fair cost allocations. These class of cooperative games
was introduced in Guardiola et al. (in Games Econ Behav 65:205–219, 2009) where it was
also proposed the Owen point. This cost allocation is an appealing solution concept that for
Production-Inventory games (PI-games) is always stable, in the sense of the core. The Owen
point allows all the players in the game to operate at minimum cost but it does not take into
account the cost reduction induced by essential players over their followers. Thus, it may be
seen as an altruistic allocation for essential players what can be criticized. The aim of this
paper is two-fold: to introduce new core allocations for PI-games improving the weaknesses
of the Owen point and to study the structure and complexity of set of stable cost allocations
(the core) of PI-games.
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1 Introduction

Classical models in Supply Chain Management assume that a single agent aims to max-
imize his utility, by developing, individually, adequate mathematical optimization models
and providing suitable solution procedures. That is, supply chain models support decision-
makers to achieve their goals optimally without any interaction among them. Nevertheless,
in nowadays complex world where, in most cases, several heterogeneous agents interact,
this simplifying assumption of a single agent is not suitable. In these setting, apart from the
pure utility maximization problem, decision-makers often face new problems that come
out either from cooperation or competition among the agents. A tutorial on game the-
ory in supply chain analysis is Cachon and Netessine (2004). The authors discuss both
noncooperative and cooperative game theory in static and dynamic situations. among retail-
ers and the supplier. A few years before, Borm et al. (2001) surveys the research area
of cooperative games associated with several types of operations research problems in
which various decision makers, interested on minimizing and allocating total join costs,
are involved. These agents face to the problem of how to distribute these joint costs back to
the individual decision maker. The paper is surveyed on the basis of a distinction between
the nature of the underlying optimisation problem: connection, routing, scheduling, pro-
duction and inventory. A more recent review, Fiestras-Janeiro et al. (2011) focus on the
applications of cooperative game theory in the management of centralized inventory sys-
tems.

This analysis of cooperation and profit allocation in supply chain management has given
rise to a fruitful literature among which we highlight the following papers. Guardiola et al.
(2007) focus on the coordination of actions and the allocation of profit in supply chains under
decentralized control in which a single distributor supplies several retailers with goods for
replenishment of stocks. The goal of all the agents is to maximize their individual profits.
Since the outcome under decentralized control is inefficient, cooperation among retailers
and the supplier, by means of coordination of actions, may improve the individual profits.
By using cooperative game theory, the authors propose a tailor-made stable, in the sense
of the core, allocation of the joint profit. Later, Drechsel and Kimms (2011) study how to
allocate cost of the cooperation on the capacitated lot sizing problem in a stable (core) and
fair way. They find there are hard-to-solve optimisation problems, they discuss them in detail
and propose mathematical programming approaches. Subsequently, Guajardo and Ronnqvist
(2015) analyse an inventory pool of spare parts, subject to a service level constraint, where the
members of the pool may have different target service levels, so that they represent different
demand classes. They show the important effects that different targets can have in the core
stability for this cooperative model. Not long ago, Ciardiello et al. (2018) study the problem
of pollution responsibility allocation across multi-tier supply chains. The model is further
developed with reference to the case of a linear supply chain and several allocation rules are
derived. In order to characterize such rules, desirable properties in terms of fairness, efficiency
and transparency are introduced. Furthermore, a stability concept for efficient allocations is
formulated.

Nevertheless still a better knowledge is needed in some models. In this paper we elaborate
on the study of cooperation in production-inventoy settings that was introduced in Guardi-
ola et al. (2009). There, the authors proposed a mode of relationship among heterogeneous
agents that enforces a horizontal cooperation in this framework. This behaviour is captured
in a cooperative game named Production-Inventory game (henceforth PI-game). That paper
proposed the so-called Owen point core-allocation that allows all players to operate at min-
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imum cost at the price of not compensating essential users by the cost reduction that they
induce over the remaining players (followers). This allocation has proven to be rather appeal-
ing and in another paper, Guardiola et al. (2008) analyze its properties and provide axiomatic
characterizations for the Owen point.

Both of those papers also contribute to a better knowledge of the core of PI-games.
Nevertheless, it was missing a deeper analysis of its complexity. Specifically speaking the
two following aspects were not considered: testing core membership and the extreme points
structure of the core of these games. Complexity issues in cooperative game theory raise
important questions only partially answered for particular classes of games. The core of
any convex game is the convex hull of its marginal vectors (Shapley 1971), and the same
property holds true for those games satisfying the Co-Ma property which include, among
others, assignment and information games, see Hamers et al. (2002) and Kuipers (1993)
respectively. It is also well-known that the core of assignment games coincide with the
allocations induced by dual solutions and it is a complete lattice with only two extreme points,
see Sotomayor (2003). Also, for transportation games, which constitute an extension of the
assignment games, some results about the relationship between the core and the allocations
induced by dual solutions are provided by Sánchez-Soriano et al. (2001). Moreover, Perea
et al. (2012) study cooperation situations in linear production problems. In particular, that
paper proposes a new solution concept called EOwen set as an improvement of the Owen set
that contains at least one allocation that assigns a strictly positive payoff to players necessary
for optimal production plans.

For minimum cost spanning tree games, flow games, linear production games, cooper-
ative facility location games or min-coloring games among others, testing whether a given
allocation is in the core is an NP-complete problem (see Faigle et al. 1997; Fang et al. 2002;
Goemans and Skutella 2004 and Deng et al. 1999, respectively). On the other hand, there
are some classes of games for which testing core membership is polynomially solvable as
for instance for routing games, see Derks and Kuipers (1997), s − t connectivity games, r -
arborescence games, max matching games, min vertex cover games, min edge cover games
or max independent set games, see e.g., Deng et al. (1999). However, for many other classes
of cooperative games answering that question is still open, as it is the case of PI-games.

In this paper, we look for alternative cost allocations improving the fairness properties of
the Owen point in that they recognize the role of the essential players on reducing the costs
of the remaining players. In addition, we investigate the structure of the core of PI-games
by determining its algorithmic complexity. Our contribution is to prove that testing core
membership is an NP-complete problem and moreover that the number of extreme points of
the core of PI-games is exponential on the number of players. Specifically, we characterize
an exponential size subset of them.

To present our results the rest of the paper is organized as follows. We start by introducing
some preliminary concepts in Sect. 2. In Sect. 3 we prove that testing core membership of
PI-games in an NP-complete problem, and we analyze the core structure of PI-games. We
define what we call the extreme functions, which help us to prove that the core of a PI-game,
in general, has an exponential number of extreme points. In Sect. 4 we introduce a new
core-allocation for PI-games, the Omega point, and provide an axiomatic characterization.
Finally, in Sect. 5we define the set ofQuid ProQuo allocations (henceforth,QPQallocations).
Every QPQ allocation is a convex combination of the Owen and the Omega point. We focus
then on the equally weighted QPQ allocation, the Solomonic allocation, and we provide
some necessary conditions for the coincidence of the latter with the Shapley value and the
Nucleolus.
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2 Preliminaries

A cost game with transferable utility (henceforth TU cost game) is a pair (N , c), where
N = {1, 2, . . . , n} is the finite set of players, and the characteristic function c : P(N ) → R,
is defined over P(N ) the set of nonempty coalitions of N . By agreement, it always satisfies
c(∅) = 0. For all S ⊆ N , we denote by |S| the cardinal of the set S.

A distribution of the costs of the grand coalition, usually called cost-sharing vector, is a
vector x ∈ R

N . For a given coalition S ⊆ N we denote by xS := ∑
i∈S xi the cost-sharing

of coalition S (where x∅ = 0). The core of a TU cost game is a set solution consisting of
those cost-sharing vectors x which allocate the grand coalition cost c(N ) in such a way that
no coalition S has incentives to leave N because x(S) is smaller than the original cost of S,
c(S). Formally, the core of (N , c) is given by

Core(N , c) = {
x ∈ R

n/xN = c(N ) and xS ≤ c(S) for all S ⊂ N
}
.

In the following, core-allocations will be cost-sharing vectors belonging to the core. A
cost game (N , c) is balanced if and only if has a nonempty core (see Bondareva 1963 or
Shapley 1967). Shapley and Shubik (1969) describe totally balanced games as those games
whose subgames are also balanced; i.e., the core of every subgame is nonempty. A cost game
(N , c) is concave if for all i ∈ N and all S, T ⊆ N such that S ⊆ T ⊂ N with i ∈ S, then
c(S) − c(S\{i}) ≥ c(T ) − c(T \{i}).

It is well-known that the core is a bounded convex polyhedron, it has a finite number of
extremepoints.Moreover, the core is a convex set. Therefore, characterizing the extreme core-
allocations is important to know the core structure. Let Q be a bounded convex polyhedron
in R

n . We say that x ∈ Q is an extreme point if y, z ∈ Q and x = 1
2 y + 1

2 z imply y = z.
From now on, we denote, respectively, by Ext (Q) and by ∂ (Q) the set of extreme points
and the boundary of the set of Q. Moreover, for the sake of readability, we use ei to refer to
the i-th element of the canonical basis of R

n and val(P) stands for the optimal value of the
mathematical programming problem P . We will also use a characterization of the extreme
points based on the restrictions that define the polyhedron Q. That is, x ∈ Ext (Q) if and
only if x satisfies as equalities at least n linearly independent constraints of those defining
Q.

The Shapley value (Shapley 1953) is a function-point solution on the class of all TU games
and for a cost game (N , c) it is defined as φ(N , c) = (φi (N , c))i∈N where for all i ∈ N

φi (N , c) =
∑

S⊆N\{i}

s!(n − s − 1)!
n! · [c(S ∪ {i}) − c(S)] .

The Nucleolus η(N , c) (Schmeidler 1969) is the allocation that lexicographically mini-
mizes the vector of excesses. It is well-known that the Nucleolus is a core-allocation provided
that the core is nonempty.

From now on, and for the sake of readability, we follow the same notation as Guardiola
et al. (2009) to describe Production-Inventory situations (henceforth: PI-situations) and PI-
games. Consider first a situation with several agents facing each one a Production-Inventory
problem. Then, they decide sharing technologies (production, inventory carrying and back-
logged demand) to reduce costs. We mean that if a group of agents cooperates then they will
produce and pay inventory carrying and backlogged demand at the cheapest costs among the
members of the coalition at each period. This situation is called a PI-situation.

Formally, A PI-situation is a 3-tuple (N , D, Z) where N = {1, . . . , n} is a finite player
set and D an integer matrix of demands with D = [d1, . . . , dn]′, di = [di1, . . . , diT ] ≥
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0, dit is the demand of the player i in period t ∈ T and T is the planning horizon. In
addition, Z = (H |B|P) is a cost matrix, so that H = [h1, . . . , hn]′, B = [b1, . . . , bn]′
and P = [p1, . . . , pn]′; where hi = [hi1, . . . , hiT ] ≥ 0, are the inventory carrying costs,
bi = [bi1, . . . , biT ] ≥ 0, are the unit backlogging carrying costs and pi = [pi1, . . . , piT ] ≥ 0,
the production costs. The decision integer variables of the model, are for each period t : qt ,
production during period, It , inventory at hand at the end of period and Et , the backlogged
demand at the end of period. The set of PI-situations (N , D, Z) is denoted by ϒ , with
n ≥ 1, T ≥ 1 and D an integer matrix.

Now given a PI-situation (N , D, Z), we can associate the corresponding TU cost game
(N , c) with the following characteristic function c: c(∅) = 0 and for any S ⊆ N , c(S) =
val(P I (S)), where P I (S) is given by

(P I (S)) min
T∑

t=1

(pSt qt + hSt It + bSt Et )

s.t.E0 = ET = I0 = IT = 0,

Et − It = Et−1 − It−1 + dS
t − qt , t = 1, . . . , T ,

qt , It , Et , non-negative, integer, t = 1, . . . , T ;
with

pSt = min
i∈S {pit }, hSt = min

i∈S {hit }, bSt = min
i∈S {bit }, dS

t =
∑

i∈S
dit .

Every TU cost game defined as above is called a Production-Inventory game. Guardiola
et al. (2009) points out that the problem P I (S) has integer optimal solutions provided that
the demands are integer. We know that for any S ⊆ N the dual problem of P I (S) is the
following mathematical programming problem,

(DLP I (S)) max
T∑

t=1

dS
t yt

s.t.yt ≤ pSt , t = 1, . . . , T ,

yt+1 − yt ≤ hSt , t = 1, . . . , T − 1,

−yt+1 + yt ≤ bSt , t = 1, . . . , T − 1.

Moreover, Guardiola et al. (2009) also proves that an optimal solution of problem

DLP I (S) is y∗
t (S) = min

{
pSt ,mink<t {pSk +hSkt },mink>t {pSk +bStk}

}
, for all t = 1, . . . , T ,

with

pSk =
{
pS1 if k < 1,
pST if k > T ,

hSkt =
t−1∑

r=k

hSr , for any k < t, t = 2, . . . , T ; hSk1 = 0, k < 1,

bStk =
k−1∑

r=t

bSr , for any k > t, t = 1, . . . , T − 1; bST k = 0, k > T .

It is important to note that those optimal solutions satisfy a monotonicity property with
respect to coalitions : y∗

t (S) ≥ y∗
t (R) for all S ⊆ R ⊆ N and all t ∈ {1, . . . , T }. Moreover,

c(S) = ∑T
t=1 y

∗
t (S) · dS

t for any ∅ �= S ⊆ N .
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PI-games are not concave in general. The Owen point, denoted by Owen(N , D, Z), is

the allocation
(∑T

t=1 d
i
t y

∗
t (N )

)

i∈N. At times, for the sake of simplicity, we use o for the Owen

point. Guardiola et al. (2009) also proves that the Owen point belongs to the core which can
be reached through a PMAS (Sprumont 1990); hence PI-games are totally balanced. When
we need to point out that the game (N , c) comes from the situation (N , D, Z) we will use
c(N ,D,Z)(S).

If there exists a period t ∈ {1, . . . , T } such that y∗
t (N\{i}) > y∗

t (N ) with dN\{i}
t > 0 we

will call i essential player. An essential player is the one that is needed by the rest of players
(at least one period) to produce a certain demand at a minimum cost. The set of essential
players is denoted by E . Those players not being essential are called inessential. We can
easily check that if i is an inessential player, oN\{i} = c(N\{i}).

Finally, to conclude this section devoted to preliminaries, we recall the class of PS-games
introduced by Kar et al. (2009). A PS-game (N , c) is a TU cost game satisfying that for all
player i ∈ N , there exists a real constant ci such that �i (S) + �i (N\ (S ∪ {i}) = ci for all
S ⊆ N\{i}, where �i (S) := c(S ∪ {i}) − c(S). The above mentioned paper proves that, for
this class of games, the Shapley value and the Nucleolus coincide; i.e. φ(N , c) = η(N , c).

3 Extreme points of the core of PI-games

Guardiola et al. (2009) demostrated that the core of PI-games without essential players
(E = ∅) shrinks to a singleton, the Owen point. However, for those PI-games with essential
players (E �= ∅), the core is large. We focus here on those PI-games with large cores and
study the structure of its core by analyzing its extreme points. First of all, we remark that
testing core membership for PI-games cannot be done in polynomial time. One can adapt the
reduction proposed in Fang et al. (2002) to prove that checking if an imputation belongs to the
core of a PI-game is anNP-complete decision problem. In spite of that, it is important to know
the structure of the core and still very little is known about the extreme points complexity of
PI-games. This is the goal of this section.

We begin this analysis by defining the essential player follower set.
Let (N , D, Z) be a PI-situation with D being an integer matrix ((N , D, Z) ∈ ϒ), and let

i be an essential player. We define the follower set of i as follows:

Fi := { j ∈ N\{i}
∣
∣
∣∃t ∈ {1, . . . , T } with d j

t > 0 and y∗
t (N\{i}) > y∗

t (N )}.
The follower set of player i consists of all players who need him to operate at a lower cost.

It is always a non-empty set. Indeed, Fi �= ∅ since taking i ∈ E, there exists t∗ ∈ {1, . . . , T }
such that y∗

t∗(N\{i}) > y∗
t∗(N ) and dN\{i}

t∗ > 0. In that case, there must be, at least, a player

j ∈ N\{i} such that d j
t∗ > 0 and y∗

t∗(N\{i}) > y∗
t∗(N ) .

In addition, you may notice that there is a pairwise relationship among essential players
and their followers, in the sense that the latter are interested in taking on a portion of the costs
of the former. This relationship allows us to introduce the concept of essential-follower pair.

Let (N , D, Z) ∈ ϒ . The essential-follower pair set, denoted by P, is:

P := {(i, j)|i ∈ E and j ∈ Fi }.
Weare now interested in determining the cost that can be transferredwithin every essential-

follower pair with a cost allocation; i.e., the maximum portion of the essential player cost
that his follower could assume while maintaining cooperation.
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Given an essential-follower pair p = (i, j) ∈ P and an allocation x ∈ R
n, the transferred

cost induced by p regarding x is:

αp(x) := min
R∈�p

{c(R) − xR},
where

�(i, j) := {R ⊆ N\{i} such that j ∈ R}.
αp(x) can be interpreted as the maximum portion of cost of player i that can be awarded

by player j while maintaining the cooperation of the group. It is worth nothing that if
x ∈ Core(N , c) then αp(x) ≥ 0.

Next result states that there are always a positive transferred cost within every essential-
follower pair with the Owen point.

Lemma 3.1 Let (N , D, Z) ∈ ϒ and (N , c) be the corresponding PI-game. Then αp(o) > 0
for all p ∈ P.

Proof As E �= ∅, we can take i ∈ E and therefore Fi �= ∅. Let R ⊆ N\{i} such that
R ∩ Fi �= ∅ and let j ∈ R ∩ Fi . By definition, there exists t∗ ∈ {1, . . . , T } such that
y∗
t∗(N\{i}) > y∗

t∗(N ) and d j
t∗ > 0. Then dR

t∗ > 0 and moreover y∗
t∗(N ) < y∗

t∗(N\{i}) ≤
y∗
t∗(R). Thus, oR < c(R). Hence, αp(o) = minR∈�p {c(R) − oR} > 0. ��
We introduce now a function that transforms any cost allocation into a new cost allocation

in which a follower player charges with the maximum cost of his essential player. That is,
for each p = (i, j) ∈ P, the function f p transforms any allocation x into a new allocation
f p(x), in which the follower player j assumes as much cost as possible from his essential
player i . It is called the extreme function.

Definition 3.2 (extreme function) Let (N , D, Z) ∈ ϒ and (N , c) be the corresponding PI-
game. For any p = (i, j) ∈ P, the extreme function f p is defined by:

f p(x) = x + ∧p(x),

where x ∈ R
n and ∧p(x) = e j · αp(x) − ei · αp(x).

Let us denote by P
|P| the |P|-fold cartesian product of the set P. We consider now the

composition of extreme functions. For each σ ∈ P
|P| we define the extreme composite

function, Fσ , as the composition of extreme functions for all the pairs in σ , that is,

Fσ (x) := (
fσ|P| ◦ fσ|P|−1 ◦ · · · ◦ fσ1

)
(x) .

Notice that if σ = (p, p, . . . , p) ∈ P
|P| then Fσ (x) = f p(x).

Example 3.3 The following table shows a PI-situation with three players and three periods:

We can easily check that c(S) =
∑3

t=1
pSt d

S
t , for all S ⊆ N . Hence, the characteristic

function of the corresponding PI-game is given in the following table:
In this example, y∗(N ) = (1, 1, 1) and y∗(N\{1}) = (2, 1, 1) are the optimal solution for

(DLPB(N )) and (DLPB(N\{1})) , respectively. Then, the Owen point is o = (25, 26, 13).
Moreover, E = {1}, F1 = {2, 3} and P = {(1, 2), (1, 3)}.

The transferred cost within every essential-follower pair in P with the Owen point are,

α(1,2)(o) = min
R∈�(1,2)

{c(R) − oR} = 10,

α(1,3)(o) = min
R∈�(1,3)

{c(R) − oR} = 12.
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Therefore, the extreme functions are

f(1,2)(o) = o + ∧(1,2)(o) = (15, 36, 13),

f(1,3)(o) = o + ∧(1,3)(o) = (13, 26, 25).

In this case, both the extreme functions, f(1,2)(o), f(1,3)(o), and the Owen point, o, are
extreme points of the core.

dS
1 dS

2 dS
3 pS1 pS2 pS3 hS1 hS2 bS1 bS2 c

{1} 10 10 5 1 2 1 1 1 1 1 35
{2} 8 12 6 2 1 1 1 1 1 1 36
{3} 6 5 2 3 1 1 1 1 2 2 25
{1, 2} 18 22 11 1 1 1 1 1 1 1 51
{1, 3} 16 15 7 1 1 1 1 1 1 1 38
{2, 3} 14 17 8 2 1 1 1 1 1 1 53
{1, 2, 3} 24 27 13 1 1 1 1 1 1 1 64

Demand Production Inventory Backlogging

P1 10 10 5 1 2 1 1 1 1 1
P2 8 12 6 2 1 1 1 1 1 1
P3 6 5 2 3 1 1 1 1 2 2

The previous example shows that the Owen point is an extreme point of the core, and that the
extreme functions transform it into other extreme points of the core. We wonder then if this
fact occurs in general for any PI-game. First, we find a very interesting property that relates
the extreme functions to the core boundary.

Proposition 3.4 Let (N , D, Z) ∈ ϒ and (N , c) be the corresponding PI-game. For all p ∈ P

f p(Core(N , c)) ⊆ ∂(Core(N , c)).

Proof Let p = (i, j) ∈ P and take x ∈ Core(N , c). Then αp(x) ≥ 0. Applying the extreme
function f p at x , we have:

f p(x) = (x1, . . . , xi−1, xi − αp(x), xi+1, . . . , x j−1, x j + αp(x), x j+1, . . . , xn).

To prove that y := f p(x) ∈ Core(N , c) we distinguish four possibilities:

• i, j ∈ S. Then yS = xS + αp(x) − αp(x) = xS ≤ c(S).
• i, j /∈ S. Then yS = xS ≤ c(S).
• i /∈ S, j ∈ S. Then yS = xS + αp(x) ≤ xS + c(S) − xS = c(S).
• i ∈ S, j /∈ S. Then yS = xS − αp(x) ≤ xS ≤ c(S).

Hence, y ∈ Core(N , c) since yS ≤ c(S) for any coalition S ⊆ N . Let us proof now that
y belongs to the frontier of the core.

If αp(x) = 0 then there exists R ∈ �p such that c(R) = xR . Since y belongs to the
core and satisfies as equality one of the constraints defining the core, we can conclude that
y ∈ ∂(Core(N , c)).
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If αp(x) > 0 then for all λ ∈ (0, 1), (1 − λ)x + λy ∈ Core(N , c). Take λ = 1 + ε with
ε > 0 to have

(1 − λ)x + λy = −εx + (1 + ε)(x + ∧p(x)) = x + (1 + ε) ∧p (x).

We can check that if R∗ ∈ �p is such that c(R∗) − xR∗ = minR∈�p {c(R) − xR} then
xR∗ +αp(x) = c(R∗), therefore x+ (1+ε)∧p (x) /∈ Core(N , c). Hence, y is not an interior
point.

It follows straightforward from the above proposition, that Fσ (Core(N , c)) ⊆
∂(Core (N , c)) for all σ ∈ P

|P|.
Themain Theorem of this Section provides a partial answer to our previous question about

the transformation of the Owen point into extreme points of the core of PI-games. It states
that for PI-situations with a single essential player, all the different compositions of extreme
functions over the Owen point generate extreme points of the core.

Theorem 3.5 Let (N , D, Z) ∈ ϒ and (N , c) be the corresponding PI-game. If E = {i}, then
Fσ (o) ∈ Ext (Core(N , c)) for all σ ∈ P

|P|.

Proof Let j ∈ Fi then the pair p j = (i, j) ∈ P. f p j (o) is an extreme point if for any
y, z ∈ Core (N , c) such that

f p j (o) = 1

2
y + 1

2
z we have that y = z. (1)

By definition, we know that

f p j (o) = (o1, . . . , oi−1, oi − αp j (o), oi+1, . . . , o j−1, o j + αp j (o), o j+1, . . . , on).

Let us suppose that zk < ok for any k �= i, j then zN\{k} > oN\{k} = c (N\{k}) .

However this is not possible, therefore yk, zk ≥ ok for all k �= i, j . Now, apply (1) to get
that yk = zk = ok ∀k �= i, j . Moreover, y j , z j ≤ o j + αp j (o) since αp j (o) > 0 is the
maximum possible increment for o j (see Lemma 3.1). Then by (1) we have that z = y and
hence f p j (o) ∈ Ext (Core(N , c)).

Now, we consider pl = (i, l) ∈ P, and apply the corresponding extreme function for this
pair. We have that

f pl
(
f p j (o)

) = (o1, . . . , oi − αp j (o) − αpl ( f p j (o)), . . . , ol

+ αpl ( f p j (o)), . . . , o j + αp j (o), . . . , on).

We distinguish two possibilities:

1. αp j (o) attains its minimum in a coalition R∗ that contains player l. In this case
αpl ( f p j (o)) = 0, thus f pl

(
f p j (o)

) = f p j (o) and by the argument above f pl
(
f p j (o)

)
is

an extreme point of Core(N , c).
2. αp j (o) attains its minimum in a coalition R∗ that does not contain player l. This case

implies that αpl ( f p j (o)) > 0. Take y, z ∈ Core(N , c) and assume that

f pl
(
f p j (o)

) = 1

2
y + 1

2
z. (2)

Using the same argument as above we conclude that yk = zk = ok for all k �= i, j, l.
Consider now the j-th coordinate. Suppose that z j > o j + αp j (o). The coalition
R∗ does not contain neither i nor l, which implies c(R∗) = oR∗ + αp j (o) < zR∗ .
Since this is a contradiction, it means that z j ≤ o j + αp j (o) (Notice that the same

123



Annals of Operations Research

argument applies to y j and thus y j ≤ o j + αp j (o)). Therefore, by ( 2) we get that
y j = z j = o j + αp j (o). Next, consider the l-th coordinate. Assume that zl >

ol + αpl ( f p j (o)), and let S∗ be the coalition where αpl ( f p j (o)) attains its minimum,
then c(S) = ∑

k∈S
(
f p j (o)

)
k

+ αpl ( f p j (o)) < zS . Again using the same argument as
in the j-th coordinate we conclude that yl = zl = ol + αpl ( f p j (o)). Finally, we get
the same conclusion for the i-th coordinate since f pl

(
f p j (o)

)
must be efficient. In con-

clusion z = y. Hence, f pl
(
f p j (o)

) ∈ Ext (Core(N , c)) . Notice that f pl
(
f p j (o)

)
is

different from f p j (o) since we have assumed that αpl ( f p j (o)) > 0.

This construction can be repeated a finite number of times for each p ∈ P. Specifically,
for any σ ∈ P

|P|, the transformation Fσ (o) ∈ Ext (Core(N , c)). ��
Corollary 3.6 Let (N , D, Z) ∈ ϒ with E = {i}, and (N , c) be the corresponding PI-game.
The Owen point is always an extreme point.

Proof Take yk, zk ≥ ok for all k ∈ N , therefore o = z = y and o ∈ Ext (Core(N , c)) . ��
At this point we know that PI-games with a single essential player have, at least, |P| + 1

extremepoints.Next example shows that the core of aPI-game, in general, cannot be explicitly
described in polynomial time.

Example 3.7 Now we consider a PI-situation with n periods and n players (Table 1):

The corresponding PI-game is given by c(S) =
∑n

t=1
pSt d

S
t , for all S ⊆ N . Moreover,

it is easy to see that E = {1} and F1 = {2, 3, . . . , n}. Then, we can rewrite the characteristic
function as follows:

c(S) =
⎧
⎨

⎩

|S| if 1 ∈ S,

n · |S| if 1 /∈ S.

In this example, the Owen point is o = (1, 1, . . . , 1). For all i ∈ F1,

α(1,i)(o) = min
R∈�(1,i)

{c(R) − oR} = min
R∈�(1,i)

{n · |R| − |R|} = n − 1

then
f(1,i)(o) = (2 − n, 1, . . . , 1, n︸︷︷︸

i

, 1, . . . , 1).

For all k �= i, k ∈ F1,

α(1,k)( f(1,i)(o)) = min
R∈�(1,k)

{c(R) −
∑

j∈R

(
f(1,i)(o)

)
j }

Table 1 Game of the Example 3.7

Demand Production Inventory Backlogging

P1 1 1 . . . 1 1
n

1
n . . . 1

n 2 2 . . . 2 2 2 . . . 2

P2 1 1 . . . 1 1 1 . . . 1 2 2 . . . 2 2 2 . . . 2

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.

Pn 1 1 . . . 1 1 1 . . . 1 2 2 . . . 2 2 2 . . . 2
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= min
R∈�(1,k)

{n · |R| − |R|
︸ ︷︷ ︸

if i /∈R

, (n − 1) · |R| − n + 1
︸ ︷︷ ︸

if i∈R

} = n − 1,

then
f(1,k)

(
f(1,i)(o)

) = (3 − 2n, 1, . . . , 1, n︸︷︷︸
i

, 1, . . . , 1, n︸︷︷︸
k

, 1, . . . , 1).

Hence, we have as many extreme points as possible ways to place “n′′ and “1′′ in n − 1
positions; i.e. in this example the core has 2n−1 + 1 extreme points.

Therefore, we can conclude that the cardinality of the extreme points is exponential in the
number of players. Hence, we cannot explicitly describe the core of a PI-game in polynomial
time.

We propose below an alternative core allocation to the Owen point that recognizes the
role played by essential players on reducing the cost of their followers.

4 Omega point

Guardiola et al. (2009) proposed the Owen point as a natural core allocation for PI-games
that arises when focusing on shadow prices of each period that each player must pay to meet
their demand in that period. It makes it possible for all players in the joint venture to operate
at minimum cost. If there is no essential player, the Owen point is the unique core allocation.
However, for those PI-situations with at least one essential player, the Owen point reveals
the altruistic character of them because of it does not take into account the role that these
essential players play in reducing the cost of their followers. As the core of the PI-games with
essential players is large, we are looking for a core allocation that motivates the essential
players to continue in the join venture obtaining a reduction in their demand costs in each
period.

Let (N , D, Z) be a PI-situation with D being an integer matrix ((N , D, Z) ∈ ϒ), and
E �= ∅. Remember that for all i ∈ E , there is a period t∗ ∈ {1, . . . , T } such that y∗

t∗(N\{i}) >

y∗
t∗(N ) and there also exists at least one player j ∈ N\{i} such that d j

t∗ > 0. We denote by
E t and Ft the sets of essential players and followers for every period t ∈ {1, . . . , T }. We
note in passing that E = ⋃

t∈T
E t .

First, we consider the marginal contribution of the shadow prices of a player i to the grand
coalition N , that is, y∗

t (N\{i})− y∗
t (N ).We then define the cost reduction that a player i ∈ N

can produce in another player j ∈ N in a period t as follows:

qt (i, j) :=
{ (

y∗
t (N\{i}) − y∗

t (N )
) · d j

t i f i �= j
0 i f i = j

The reader may notice that qt (i, j) > 0 only if i ∈ E t and j ∈ Ft , otherwise qt (i, j) = 0.
That is to say that only essential players can reduce their follower costs in a given period.
Alternatively, the amount of the cost qt (i, j) can be interpreted as the maximum cost increase
that a follower j ∈ Ft is able to assume, in a certain period t, to incentivize the essential
player i ∈ E t .

Next we define a new cost allocation rule, the Omega point, that considers the maximum
cost increase mentioned above.

Definition 4.1 (Omega point) Let (N , D, Z) ∈ ϒ and (N , c) be the corresponding PI-game.
The Omega point ω ∈ R

n is defined as ωi = ∑T
t=1 ωt

i for all player i ∈ N , where for each
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period t = 1, . . . , T ,

ωt
i :=

{
y∗
t (N )dit + Qt

i if
∣
∣E t

∣
∣ = 1

y∗
t (N )dit otherwise

with Qt
i = qt (E t , i) − ∑

j∈Ft qt (i, j).

The Omega point means that, in each of the periods with a single essential player, i.e.
without competition, this essential player gets a cost reduction fromhis followers. The amount
Qt

i represents the cost reduction or increase, depending on the sign, for player i ∈ N in the
period t . Notice that Qt

i < 0, only if i is an essential player, otherwise Qt
i ≥ 0. In addition,

Qt = (
Qt

i

)
i∈N for all t ∈ {1, . . . , T }.

The reader may also note that ω = o + Q, where Q ∈ R
n with Qi = ∑T

t=1 Q
t
i . It is

worth noting that Qi represents the marginal cost reduction or increase, of player i to the rest
players. Moreover,

∑
i∈N Qi = 0. In this setting, those players with Qi < 0, would prefer

the Omega point to the Owen point. On the contrary, those players with Qi > 0 would like
the Owen point more.

The following example illustrates the cost reduction that the Omega point applies to
essential players while increasing the cost of followers.

Example 4.2 In example 3.3 the Owen point is o = (25, 26, 13). Moreover, E1 = {1},
F1 = {2, 3}, E2 = E3 = ∅ . The cost reduction for the essential player 1 from his followers
2 and 3 are:

q1(1, 2) = 8; q1(1, 3) = 6;
Therefore,

ω1 = o1 − q1(1, 2) − q1(1, 3) = 25 − 8 − 6 = 11

ω2 = o2 + q1(1, 2) = 34

ω3 = o3 + q1(1, 3) = 19

In this case ω = (11, 34, 19) = (25, 26, 13) + Q, with Q = (−14, 8, 6). It is also a
core-allocation. Note that player 1 obtains a cost reduction of 14 units, while players 2 and
3 are increasing their costs by 8 and 6 units, respectively. Here, the Omega point is a core-
allocation that recognizes the essential role of player 1 through a cost reduction assumed by
his followers. Next we demonstrate that this always holds for any PI-game.

Proposition 4.3 Let (N , D, Z) ∈ ϒ and (N , c) be the corresponding PI-game. The Omega
point is always a core-allocation.

Proof Consider any period t and a coalition S ⊆ N . If t does not have essential players or
has more than one, then ωt

S = ∑
i∈S y∗

t (N )dit ≤ ∑
i∈S y∗

t (S)dit = y∗
t (S)dS

t .
Otherwise, suppose that player k is essential in the period t (E t = {k}). we distinguish

two possibilities:

• k ∈ S, then

ωt
S = ωt

k +
∑

i∈S∩Ft

ωt
i +

∑

i∈S\Ft

ωt
i = y∗

t (N )dkt −
∑

j∈Ft

qt (k, j)

+
∑

i∈S∩Ft

(
y∗
t (N )dit + qt (k, i)

)
+

∑

i∈S\Ft

y∗
t (N )dit

= y∗
t (N )dS

t +
∑

i∈S∩Ft

qt (k, i) −
∑

j∈Ft

qt (k, j)
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= y∗
t (N )dS

t −
∑

j∈Ft\S
qt (k, j) ≤ y∗

t (N )dS
t ≤ y∗

t (S)dS
t

• k /∈ S, then

ωt
S =

∑

i∈S∩Ft

ωt
i +

∑

i∈S\Ft

ωt
i =

∑

i∈S∩Ft

(
y∗
t (N )dit + qt (k, i)

)
+

∑

i∈S\Ft

y∗
t (N )dit

= y∗
t (N )dS

t +
∑

i∈S∩Ft

(
y∗
t (N\{k}) − y∗

t (N )
)
dit

=
∑

i∈S\Ft

y∗
t (N )dit +

∑

i∈S∩Ft

y∗
t (N\{k})dit

≤
∑

i∈S
y∗
t (N\{k})dit ≤

∑

i∈S
y∗
t (S)dit = y∗

t (S)dS
t

Hence, ωt
S ≤ y∗

t (S)dS
t for all t ∈ T . Then, ωS = ∑T

t=1
∑

i∈S ωt
i = ∑T

t=1 ωt
S ≤

∑T
t=1 y

∗
t (S)dS

t = c(S) for any coalition S ⊆ N . Moreover, ωN = oN + ∑
i∈N Qi =

oN = c(N ). Therefore ω ∈ Core(N , c). ��

4.1 Characterization of the Omega point

To complete the study of the Omega point, we here propose an axiomatic characterization
based on a set of desirable properties that make it unique. In order to do that, we denote by
γ a generic allocation rule on ϒ and consider the following properties, some of which have
been used in the literature to axiomatize alternative allocations:

(EF) Efficiency. For all x ∈ γ (N , D, Z) and for any PI-situation (N , D, Z) ∈ ϒ , xN =
c(N ,D,Z)(N ).

(NE) Nonemptiness. For any PI-situation (N , D, Z) ∈ ϒ , γ (N , D, Z) �= ∅.
(IBC) Inessential bounded cost. For any PI-situation (N , D, Z) ∈ ϒ and for all x ∈

γ (N , D, Z), if i is an inessential player, then xi ≤ ∑T
t=1 y

∗
t (N\E t )dit

(TI) Tyranny. For all x ∈ γ (N , D, Z) and for any PI-situation (N , D, Z) ∈ ϒ , if k is a
single essential player then xN\{k} = c(N ,D,Z)(N\{k}).

(ACP) Additive combination of periods’ demands. For all x ∈ γ (N , D, Z) and for any PI-
situation (N , D, Z) ∈ ϒ , there exists (zt )t∈T ∈ (RN )N such that x = ∑T

t=1 zt and
for all t ∈ T , zt ∈ γ (N , Dt , Z) if

∣
∣E t

∣
∣ ≤ 1 and zt = Owen(N , Dt , Z) otherwise,

where

Dt =
(
dip

)

i=1,...,n
p=1,...,T

, dip =
{
dip if t = p,
0 otherwise.

(3)

The first two properties were already used in Guardiola et al. (2008), among many other
papers, to characterize the Owen point solution, and they are also important to our new
characterization of theOmega point. Recall thatEfficiency ensures that the total cost is entirely
allocated among the players. Analogously, Nonemptiness guarantees that this allocation rule
always return a feasible allocation of the overall cost when applied to any PI-situation.
Inessential bounded cost imposes a maxim cost for every inessential player in situations
which an essentials players has left. Tyranny implies that a single essential player will assert
all his power over the rest so that they assume the maximum possible cost.

Finally, an allocation rule satisfies the property of Additivity combination of periods’
demands if it is additive with respect to the demand of the periods that has at most an essential
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player plus theOwenpoint of those periodswithmore thanone essential player.Weemphasize
that this additivity results from the following relationship c(N ,D,Z) = ∑T

t=1 c
(N ,Dt ,Z) for all

( N , D, Z ) ∈ ϒ. Thus, we are interested on allocation rules compatible with this form of
distribution of their demands.

First, we show that the Omega point satisfies all the previous properties.

Proposition 4.4 The Omega point defined on the set ϒ, satisfies EF, NE, IBC, TI and ACP.

Proof For any PI situation (N , D, Z) ∈ ϒ we know by proposition 4.3 that ω(N , D, Z) ∈
Core(N , c) by . Hence, the Omega point verifies the properties of EF and NE. An inessential
player satisfy IBC since if for all i ∈ N

ωi (N , D, Z) =
T∑

t=1

ωt
i (N , D, Z) =

T∑

t=1

ωi (N , Dt , Z)

=
∑

t∈T /|E t |=1

(
y∗
t (N )dit + qt (E t , i)

)
+

∑

t∈T /|E t |�=1

y∗
t (N )dit

=
∑

t∈T /|E t |=1

y∗
t (N\E t )dit +

∑

t∈T /|E t |�=1

y∗
t (N )dit ≤

T∑

t=1

y∗
t (N\E t )dit

if there is only one essential player k, then:

T∑

t=1

ωt
N\{k} =

T∑

t=1

⎛

⎝y∗
t (N )dN\{k}

t +
∑

j∈N\{k}
qt (k, i)

⎞

⎠

=
T∑

t=1

⎛

⎝y∗
t (N )dN\{k}

t +
∑

j∈N\{k}

(
y∗
t (N\{k}) − y∗

t (N )
)
d j
t

⎞

⎠

=
T∑

t=1

(
y∗
t (N\{k})dN\{k}

t

)
= c(N ,D,Z)(N\{k}).

Then satisfy TI. Finally, considering Dt as it was already defined in (3), we obtain that∑T
t=1 Dt = D and

ω(N , D, Z) =
(

T∑

t=1

ωt
i (N , D, Z)

)

i∈N
=

T∑

t=1

(ωi (N , Dt , Z))i∈N

=
∑

t∈T /|E t |≤1

ωi (N , Dt , Z) +
∑

t∈T /|E t |≥2

Owen(N , Dt , Z)

Hence, the Omega point satisfies ACP.

Second, we focus on PI-situations without essential players and show that, in this setting,
the Omega point matches the Owen point, and both can be characterized by using only three
of the previous properties.

Proposition 4.5 Let (N , D, Z) ∈ ϒ be a PI situation with |E| = 0. Then, γ (N , D, Z) =
ω(N , D, Z) = Owen(N , D, Z) if and only if γ satisfies NE, EF and IBC.

123



Annals of Operations Research

Proof (If) The if part of the proof is direct from Proposition 4.4.
(Only if) γ (N , D, Z) �= ∅ by NE. Take x ∈ γ (N , D, Z). Since there are not essential
players, by IBC, it holds that xi ≤ ∑T

t=1 y
∗
t (N\E t )dit = ∑T

t=1 y
∗
t (N )dit = ωi (N , D, Z) for

each i ∈ N . Therefore, by EF, γ (N , D, Z) = ω(N , D, Z) = Owen(N , D, Z). ��
The main Theorem of this section shows that the Omega point is the unique allocation

rule that satisfies the aforementioned five properties.

Theorem 4.6 An allocation rule on (N , D, Z) ∈ ϒ satisfies the properties EF, NE, IBC, TI
and ACP if and only if it coincides with the Omega point.

Proof (If) The if part of the proof is direct from Proposition 4.4.
(Only if) Let γ be an allocation rule. The case where the number of essential players is
zero, namely |E| = 0, follows from Proposition 4.5. Then, it remains to prove the case when
|E| ≥ 1.In this case, we know that D = D1 + D2 + · · · + DT where Dt is (see (3)):

Dt =

⎛

⎜
⎜
⎜
⎝

0 . . . 0 d1t 0 . . . 0
0 . . . 0 d2t 0 . . . 0
... . . . 0

... 0 . . .
...

0 . . . 0 dnt 0 . . . 0

⎞

⎟
⎟
⎟
⎠

.

Then for all t ∈ T , (N , Dt , Z) is a PI-situation with Dt an integer matrix. This implies
that (N , Dt , Z) belongs to ϒ . Therefore, for any t ∈ T , the Omega point for (N , Dt , Z) is
(ωi (N , Dt , Z))i=1,...,n :

By NE, γ (N , Dt , Z) �= ∅. for each situation (N , Dt , Z) we have two cases:

• ∣
∣E t

∣
∣ = 0, then by Proposition 4.5 γ (N , Dt , Z) = ω(N , Dt , Z) = Owen(N , Dt , Z).

• E t = {k}. Take u ∈ γ (N , Dt , Z), by IBC ui ≤ y∗
t (N\{k})dit for all i ∈ N\{k} and

by TY uN\{k} = y∗
t (N\{k})dN\{k}

t . Hence for all i ∈ N\{k} ui = y∗
t (N\{k})dit =

y∗
t (N )dit + qt (E t , i) = ωi (N , Dt , Z). Finally, by EF uk = c(N ) − c(N\{k}) =
y∗
t (N )dN

t −y∗
t (N\{k})dN\{k}

t = y∗
t (N )dkt −(

y∗
t (N\{k}) − y∗

t (N )
)
dN\{k}
t = y∗

t (N )dkt −∑
j∈Ft qt (k, j) = ωk(N , Dt , Z).

Therefore, if x ∈ γ (N , D, Z) byACPone has that x = z1+· · ·+zt with zt ∈ γ (N , Dt , Z)

for all t ∈ T , and so

x =
T∑

t=1

zt =
∑

t∈T /|E t |≤1

ω(N , Dt , Z) +
∑

t∈T /|E t |≥2

Owen(N , Dt , Z) = ω(N , D, Z).

The above equation implies that γ (N , D, Z) = ω(N , D, Z). ��
Finally, we prove that all the properties used in Theorem 4.6 are logically independent.

That is, the characterization of the Omega point is tight in the sense that no property is
redundant.

Example 4.7 Let γ be a solution rule defined on ϒ as

γ (N , D, Z) :=

⎧
⎪⎨

⎪⎩

(
c(N ,D,Z)(N )

2 ,
c(N ,D,Z)(N )

2

)
, (N , D, Z) ∈ ϒ1

ω(N , D, Z), otherwise,

where
ϒ1 := {(N , D, Z) ∈ ϒ/|N | = 2, T = 2, E1 = {1, 2}, E2 = ∅}.
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γ (N , D, Z) satisfies EF, NE, IBC and TI, but not ACP.

Example 4.8 Let γ be a solution rule defined on ϒ as

γ (N , D, Z) :=
⎧
⎨

⎩

(
c(N ,D,Z)(N ), 0

)
, (N , D, Z) ∈ ϒ2

ω(N , D, Z), otherwise,

where
ϒ2 := {(N , D, Z) ∈ ϒ/|N | = 2, T = 1, E = ∅}.

γ (N , D, Z) satisfies EF, NE, ACP and TI, but not IBC.

Example 4.9 Let γ be a solution rule defined on ϒ as

γ (N , D, Z) := Owen(N , D, Z)

γ (N , D, Z) satisfies EF, NE, IBC, and ACP, but not TI.

Example 4.10 Let γ be a solution rule defined on ϒ as

γ (N , D, Z) :=
⎧
⎨

⎩

(
c(N ,D,Z)(N\{E1}), c(N ,D,Z)(N\{E1})) , (N , D, Z) ∈ ϒ3

ω(N , D, Z), otherwise,

where
ϒ3 := {(N , D, Z) ∈ ϒ/|N | = 2, T = 1, |E1| = 1}.

γ (N , D, Z) satisfies NE, IBC, TI and ACP, but not EF.

Example 4.11 Let γ be a solution rule defined on ϒ as

γ (N , D, Z) := ∅.

γ (N , D, Z) satisfies EF, ACP, IBC, and TI. but not NE.

5 Quid Pro Quo allocations

As we already mentioned, the Omega point can be considered the natural aspiration of the
essential players to achieve the biggest cost reduction while the Owen point reflects their
altruistic character. We combine both extreme characteristics and define the λ-agreement
a(λ) := λω + (1 − λ) o with λ ∈ [0, 1] , as the convex linear combination of the Owen
point and the Omega point. The parameter λ represents here the weight given to individual
behavior, by those players who want to maximize their cost reduction, compared to altruistic
behavior (by 1 − λ), which benefits the other players.

The set of all the above agreements is called Quid Pro Quo allocation set.

Definition 5.1 (Quid Pro Quo allocation set) Let (N , D, Z) ∈ ϒ and (N , c) be the corre-
sponding PI-game. We define the Quid pro quo allocation set as follows:

QPQ(N , c) := {a(λ) such that λ ∈ [0, 1]} .
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The Quid Pro Quo allocation set, henceforth QPQ-set, is a parametric family of core-
allocations. That is, QPQ(N , c) ⊆ Core(N , c).

The following example illustrate the wealth of the QPQ-set of a PI-situation with multiple
essential players.

Example 5.2 Let us consider a PI-situation with four players in four periods (Table 2):
The characteristic function of the corresponding PI-game is described below (Table 3):
Here, y∗(N ) = (1, 1, 1, 1) and the Owen point is o = (7, 7, 7, 6). Moreover, E = N ,

because of each player is essential just in one period. For example in period 1, E1 = {1}
and F1 = {2, 3, 4}. In addition, q1(1, j) = 2 for j ∈ F1, Q1 = (−6, 2, 2, 2), Q2 =
(1,−3, 1, 1), Q3 = (2, 1,−4, 1) and Q4 = (2, 2, 2,−6).

It is easy to check that Q = (−1, 2, 1,−2) that is, players 1 and 4 are interested in
improving the Owen point, and they would prefer the Omega point. However, players 2 and
3, still being essential, get some benefit with the Owen point’s and they would prefer to keep
on it.

On the other hand, here the omega point is ω = (6, 9, 8, 4) and the QPQ-set is given by:

QPQ(N , c) := {(7 − λ, 7 + 2λ, 7 + λ, 6 − 2λ) such that λ ∈ [0, 1]}

Table 2 PI-situation with 4 players and 3-periods in Example 5.2

Demand Production Inventory Backlogging

P1 2 1 2 2 1 2 2 2 1 1 1 2 2 2

P2 2 2 1 2 2 1 2 2 1 1 1 2 2 2

P3 2 1 2 2 2 2 1 2 1 1 1 2 2 2

P4 2 1 1 2 2 2 2 1 1 1 1 2 2 2

Table 3 PI-game with 4 players in Example 5.2

dS
1 dS

2 dS
3 dS

4 pS1 pS2 pS3 pS4 hS1 hS2 hS3 bS1 bS2 bS3 c

{1} 2 1 2 2 1 2 2 2 1 1 1 2 2 2 12

{2} 2 2 1 2 2 1 2 2 1 1 1 2 2 2 12

{3} 2 1 2 2 2 2 1 2 1 1 1 2 2 2 12

{4} 2 1 1 2 2 2 2 1 1 1 1 2 2 2 10

{1, 2} 4 3 3 4 1 1 2 2 1 1 1 2 2 2 21

{1, 3} 4 2 4 4 1 2 1 2 1 1 1 2 2 2 20

{1, 4} 4 2 3 4 1 2 2 1 1 1 1 2 2 2 18

{2, 3} 4 3 3 4 2 1 1 2 1 1 1 2 2 2 22

{2, 4} 4 3 2 4 2 1 2 1 1 1 1 2 2 2 19

{3, 4} 4 2 3 4 2 2 1 1 1 1 1 2 2 2 19

{1, 2, 3} 6 4 5 6 1 1 1 2 1 1 1 2 2 2 27

{1, 2, 4} 6 4 5 6 1 1 2 1 1 1 1 2 2 2 24

{1, 3, 4} 6 3 5 6 1 2 1 1 1 1 1 2 2 2 23

{2, 3, 4} 6 4 4 6 2 1 1 1 1 1 1 2 2 2 26

{1, 2, 3, 4} 8 5 6 8 1 1 1 1 1 1 1 2 2 2 27
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If we consider the same weight for both individual and altruistic behaviors, we get the
Shapley, which also matches the Nucleolus. That is, for λ = 1

2 the Shapley value and

Nucleolus coincides and both are equal to
(
13
2 , 8, 15

2 , 5
)
.

At this point we wonder whether this coincidence always holds for every PI-game. The
answer is no, in general, as example 5.5 reveals.

The main result of this section shows that, if no player can get a cost reduction in any
coalition without an essential player, then the equal agreement, a

( 1
2

)
, coincides with the

Shapley value and the Nucleolus. In some sense, it is a Solomonic agreement between the
players who demand cost reductions (individual behaviour) and those who do not (altruistic
behaviour). For that, we call a

( 1
2

)
Solomonic allocation and denote it ς(N , c).

Proposition 5.3 Let (N , D, Z) ∈ ϒ and (N , c) be the corresponding PI-game. Assume that
for each t = 1, . . . , T the following conditions are simultaneously fulfilled:

(i)
∣
∣E t

∣
∣ ≤ 1,

(ii) y∗
t (E t ) = y∗

t (N ) if E t �= φ,

(iii) y∗
t (N\E t ) = y∗

t ({i}) for all i ∈ N\E t .

Then, ς(N , c) = φ(N , c) = η(N , c).

Proof Consider (N , Dt , Z) ∈ ϒ and (N , ct ) be the corresponding PI-game, with, (only
period t has demand)

Dt =
(
dip

)

i=1,...,n
p=1,...,T

, dip =
{
dip if t = p,
0 otherwise.

We will denote to simplify notation o(N , Dt , Z) and ω(N , Dt , Z) as ot and ωt , respec-
tively. By (i) we consider only two cases:

• If
∣
∣E t

∣
∣ = 0 thenωt = ot = Core(N , ct ) = η(N , ct ) since the Nucleolus always belongs

to the core of a game. Moreover, because of the condition (iii) y∗
t (N ) = y∗

t ({i}) for all
i ∈ N , then ct (S) = otS for all S ⊆ N , It is easy to verify that all players are dummy
players then φ(N , ct ) = ot .

• If
∣
∣E t

∣
∣ = 1, (E t = {k}).Note that if k ∈ S then ct (S∪{i})−ct (S) = y∗

t (N )dit , otherwise

(k /∈ S) then by condition (iii) ct (S ∪ {i}) − ct (S) = y∗
t (S ∪ {i})dS∪{i}

t − y∗
t (S)dS

t =
y∗
t (N\E t )dit for all i ∈ N\E t . If i ∈ N\E t then,

φi (N , ct ) =
∑

S⊆N�{i}
γ (S) · [ct (S ∪ {i}) − ct (S)

] =
∑

S⊆N�{i}/k∈S
γ (S) · [ct (S ∪ {i}) − ct (S)

]

+
∑

S⊆N�{i}/k /∈S
γ (S) · [ct (S ∪ {i}) − ct (S)

]

=
∑

S⊆N�{i}/k∈S
γ (S) · y∗

t (N )dit +
∑

S⊆N�{i}/k /∈S
γ (S) · y∗

t (N\E t )dit

= y∗
t (N )dit ·

⎛

⎝
∑

S⊆N�{i}/k∈S
γ (S)

⎞

⎠
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+y∗
t (N\E t )dit ·

⎛

⎝
∑

S⊆N�{i}/k /∈S
γ (S)

⎞

⎠

= 1

2
· y∗

t (N )dit + 1

2
· y∗

t (N\E t )dit

= 1

2
· y∗

t (N )dit + 1

2
·
(
y∗
t (N )dit + (

y∗
t (N\{E t }) − y∗

t (N )
) · dit

)

= 1

2
· oti + 1

2
· ωt

i

By efficiency of Shapley value φE t (N , ct ) = 1
2 · otE t + 1

2 · ωt
E t . Moreover, Shapley value

satisfies additivity property, thus for all player i ∈ N

φi (N , c) =
T∑

t=1

φi (N , ct ) =
T∑

t=1

(
1

2
· oti + 1

2
· ωt

i

)

= 1

2
·

T∑

t=1

oti + 1

2
·

T∑

t=1

ωt
i

= 1

2
· oi (N , D, Z) + 1

2
· ωi (N , D, Z)

since the Owen point is additive for the demands [demonstrated in Guardiola et al.
(2008)] and ωi (N , Dt , Z) = ωt

i (N , D, Z). Hence, ς(N , c) = φ(N , c). Now, we will
prove that the Shapley value coincides with the Nucleolus. As we have seen previously
if the properties (i), (i i) and (i i i) are satisfied for a period t = 1, . . . , T and for each
i ∈ N and for all S ⊆ N\{i}

�t
i (S) := ct (S ∪ {i}) − ct (S) =

⎧
⎨

⎩

y∗
t (N )dit i f E t ∈ S and i /∈ E t

y∗
t (N\E t )dit i f E t /∈ S and i /∈ E t

y∗
t (N )dit − y∗

t (N\E t )dit i f i ∈ E t

similarly we get that

�t
i (N\ (S ∪ {i})) =

⎧
⎨

⎩

y∗
t (N\E t )dit i f E t ∈ S and i /∈ E t

y∗
t (N )dit i f E t /∈ S and i /∈ E t

y∗
t (N )dit − y∗

t (N\E t )dit i f i ∈ E t

Hence, �t
i (S) + �t

i (N\ (S ∪ {i})) = y∗
t (N )dit + y∗

t (N\E t )dit if i ∈ N\E t for all S ⊆
N\{i} and �t

i (S) + �t
i (N\ (S ∪ {i})) = 2 · (y∗

t (N )dit − y∗
t (N\E t )dit

)
if i ∈ E t for all

S ⊆ N\E t . We consider �i (S) := ∑T
t=1 �t

i (S) for each i ∈ N and for all S ⊆ N\{i}.
Thus �i (S) + �i (N\ (S ∪ {i})) is a constant for all S ⊆ N\{i} and for all i ∈ N . Then
(N , c) is a PS-game and ς(N , c) = φ(N , c) = η(N , c).

The reader may notice that for those situations in which the properties (i) , (i i) and
(i i i) hold and, in addition, Q = 0 (i.e., o = ω), then QPQ(N , c) = {o(N , D, Z)} =
{φ(N , c)} = {η(N , c)}. Otherwise, the core is larger.

Finally, we analyze the relationships between conditions (i), (i i), (i i i) and concavity of
PI-games.

Proposition 5.4 Let (N , D, Z) ∈ ϒ and (N , c) be the corresponding PI-game. If for each
t = 1, . . . , T conditions (i), (ii) and (ii) are fulfilled simultaneously the (N , c) is concave.
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Proof Consider (N , Dt , Z) ∈ ϒ and (N , ct ) be the corresponding PI-game,

(a) If
∣
∣E t

∣
∣ = 0 then y∗

t ({i}) = y∗
t (N ) for all i ∈ N henceforth ct (S)−ct (S\{i}) = y∗

t (N )dit
for all i ∈ N and for all S ⊆ N . Hence (N , ct ) is concave.

(b) If
∣
∣E t

∣
∣ = 1, let say E t = {k}. Then two cases can be distinguished:

(b1) k ∈ S ⊆ T ⊂ N then ct (S) − ct (S\{i}) = y∗
t (N )dit = ct (T ) − ct (T \{i}) for all

i ∈ N\{k}. Finally
ct (S) − ct (S\{k}) ≥ ct (T ) − ct (T \{k});

y∗
t (N )dS

t − y∗
t (N\{k})dS\{k}

t ≥ y∗
t (N )dTt − y∗

t (N\{k})dT \{k}
t ;

y∗
t (N\{k})dT \S

t ≥ y∗
t (N )dT \S

t .

It is true since y∗
t (S) ≥ y∗

t (R) for all S ⊆ R ⊆ N and all t ∈ {1, . . . , T }.
(b2) k /∈ S and k ∈ T . By condition (iii) ct (S) − ct (S\{i}) = y∗

t (N\{k})dit ≥ ct (T ) −
ct (T \{i}) since if k ∈ T is satisfied ct (T ) − ct (T \{i}) = y∗

t (N )dit and if k /∈ T we
have that ct (T ) − ct (T \{i}) = y∗

t (N\{k})dit .
Finally, by additivity property of PI-games with respect to periods [see Guardiola et al.

(2008)] (N , c) is concave. ��
Next example shows that conditions (i), (i i), (i i i), although necessaries, are no sufficient

for concavity.

Example 5.5 Let us consider a PI-situation with three players in three periods: Table 4.
Using those data one can obtain the cooperative game with characteristic function

described below: Table 5.
It is easy to check that the above game is concave, but condition (i i i) does not hold.

Indeed, for the first period, E1 = {1} but y∗
1 ({2, 3}) = 2 < 3 = y∗

1 ({3}).
Moreover, the Nucleolus η(N , c) =

(
70
3 , 85

3 , 100
3

)
is lightly different from the Shapley

value, φ(N , c) =
(
125
6 , 155

6 , 115
3

)
.

Table 4 PI-situation with 3 players and periods in Example 5.5

Demand Production Inventory Backlogging

P1 10 10 10 1 2 3 1 2 1 1

P2 10 10 10 2 1 3 1 2 1 1

P3 10 10 10 3 3 1 1 2 2 2

Table 5 PI-game with 3 playes in Example 5.5

dS
1 dS

2 dS
3 pS1 pS2 pS3 hS1 hS2 bS1 bS2 c

{1} 10 10 5 1 2 3 1 2 1 1 45

{2} 10 10 10 2 1 3 1 1 1 1 50

{3} 10 10 10 3 3 1 1 2 2 2 70

{1, 2} 20 20 15 1 1 3 1 1 1 1 70

{1, 3} 20 20 15 1 2 1 1 2 1 1 75

{2, 3} 20 20 20 2 1 1 1 1 1 1 80

{1, 2, 3} 30 30 25 1 1 1 1 1 1 1 85

123



Annals of Operations Research

Finally, o = (30, 30, 25), ω = (25, 30, 30) and so the Solomonic allocation is ς(N , c) =(
55
2 , 30, 55

2

)
.

6 Concluding remarks

This paper completes the study of the PI-games presented in Guardiola et al. (2008, 2009).
Those two papers proposed the Owen point as a natural core-allocation, which does not pay
attention to the role that essential players play in reducing the costs of their followers. In
that sense, essential players could consider the Owen point as an altruistic core-allocation.
However, the core was not studied in depth there.

Here we have analyzed carefully the core structure of PI-games, and we have realized
that the number of extreme point of its core is exponential in the number of players. Then,
we have proposed a new core-allocation, the Omega point, that compensates the essential
players for their role in reducing the costs of their followers. Based on the Owen and Omega
points we have defined the QPQ-set. Since every QPQ allocation is a convex combination of
the Owen and the Omega points, we have paid special attention to the equally weighted QPQ
allocation, the Solomonic allocation. Finally, we have provided some necessary conditions
for the coincidence of the latter with the Shapley value and the Nucleolus. A further extension
of PI-games to amore general settingwith set-up costs can be found inGuardiola et al. (2021).
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